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Abstract— Time Domain Passivity Control deals with the
stabilization of haptic interfaces in teleoperation using the notion
of passivity directly in the continuous time variables like force
and velocity. In a previous work, authors have already shown
that this concept can be utilized to stabilize the time-delayed
teleoperation by considering the communication channel as an
active component and to design passivity controllers for it on
master side using a Kalman filter based recursive prediction
of slave side energy. However, such a scheme is prone to
large corrective impulses generated by passivity controllers
as the scheme only comes into action when the net energy
goes negative, while on other time instants it stays out of the
control loop providing a completely transparent teleoperation.
These impulses degrade the performance of teleoperator. It is
thus proposed, that the derivative of net energy should also
be computed in real-time, and as soon as this term becomes
negative, indicating a decline in the net energy, the passivity
controllers should immediately compensate this active behavior.
Simulation results of the proposed scheme showing very good
stability and transparency are presented.

Keywords—Time Domain Passivity Control, Stabilization,
Teleoperation, Time Delay

I. INTRODUCTION

Stability is a fundamental issue in networked control sys-
tems. In many of the present day teleoperation systems, a
computer network serves as the basis of communication.
Force feedback in such a system turns the unilateral control
scheme to a bilateral one and seriously raises the question
of the stability[1]. Anderson and Spong[2] published the first
solid result by passivation of the system using scattering
theory. Niemeyer and Slotine introduced wave variables based
approach for the passivation of telerobotic systems in the
presence of constant or time-varying delays[3]. Despite the
benefits offered by wave-variables, they still lack a direct
physical meaning when compared to their counterparts like
force and velocity[4]. The absence of physical manifestation
can pose challenges when designing controllers and it can be
difficult to make use of intuitive insight in this process.

Time Domain Passivity Control(TDPC) was introduced
by Hannaford and Ryu et. al. [5]. This approach does not
require for the power variables to be transformed into wave-
variables. Rather a straight-forward notion of energy is used

to define passivity of the system. The proposed framework
has been used in several applications to stabilize teleoperation
systems showing very good results, see [6] and references
therein. A brief review of TDPC is given in Section II. If the
communication network in a port-based teleoperation system,
as given in Fig. 1, is taken as a component that is to be
stabilized, then TDPC approach can be applied to it provided
there are no delays involved. However, in the presence of time
delays, it becomes hard (i) to compute, and (ii) to convey the
energy information, in a timely fashion, from both sides across
the communication channel.

Here we attempt to solve this problem using i) an energy
prediction approach for passivity controller design, and ii) the
derivatives of net energy that are obtained using the aforesaid
energy prediction. A Kalman filter is used to recursively
estimate the parameters of transfer function from the slave
velocity to the environment force. The available model is then
used for k−step ahead prediction of slave-side energy. Using
this information and the derivatives of net energy, we can
achieve a network block that is passive and such that TDPC
functions properly resulting in a stable teleoperation even in
the presence of time delays.

II. TIME DOMAIN PASSIVITY CONTROL

A. Passivity Theory

Passivity is concerned with energies of a system. Let Ei

denote the initial energy of a system. Then this system will be
called passive if:

E(t) =
∫ t

0

Pdτ + Ei ≥ 0 (1)

Fig. 1. A Telerobotic Network
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where E(t) is the total energy of the system at time t. P de-
notes the net power at input and output ports. Assuming initial
system energy to be zero, we get a well-known expression for
energy of the system:

E(t) =
∫ t

0

Pdτ =
∫ t

0

uT y dτ ≥ 0 (2)

u and y represent system input and output vectors respectively.
In the case of a telerobotic system, they are usually the
causal pair f and v. As an n-port is characterized by the
causal relationship between effort f (force, voltage), and flow
v(velocity, current) so, for a network 2-port, as shown in Fig.
1, the equation changes to:

E(t) =
∫ t

0

Pdτ

=
∫ t

0

(fmd(τ)vm(τ) − fs(τ)vsd(τ))dτ ≥ 0 (3)

Signs should be carefully selected in this expression. Here we
are considering fmd, vm to be input- whereas fs, vsd to be
output-variables.

Equation 3 means that a passive system must not generate
energy by itself. It can only dissipate the input energy or in
ideal conditions can function as lossless channel in which case
E(t) = 0.

B. Time Domain Passivity Control

Using TDPC[5] on a network 2-port, as given in Fig. 1, a
passivity observer can be designed as:

Eobs(n) = ∆T
n∑

k=0

(fmd(k)vm(k) − fs(k)vsd(k)) (4)

or
Eobs(n) = ∆T W (n) (5)

With sufficiently small ∆T , Eobs(n) closely matches the
system energy at instant tn. In normal passive operation,
Eobs(n) should always be positive. In cases when Eobs(n) <
0, passivity observer indicates that the system is generating
energy and has gone active. Sometimes, control action may
not be required, e.g., when this is due to some noise, or has
occurred for a very brief time instant and is of a negligible
magnitude, etc.

But generally, once the system is regarded as an active
port, a passivity controller, depending on the causality of the
port, must be engaged to dissipate the excess energy. While
designing a passivity controller at any port, care must be taken
not to change the input variable as that would essentially result
in command signal errors. Rather, the output variables of the
port should be modified in real-time. In our case, as given in
Fig. 2, two passivity controllers are placed on both sides of
the network port to be stabilized.

Passivity controller αm dissipates energy on an impedance
causality (master side) and αs on an admittance causality
(slave side), see Fig. 2. Computation of these controllers
depends on the observed power value W (n) and the results
of Ryu. et. al.[5] are used as a basis for extension of TDPC

concept to delayed teleoperation given in this work. Calcu-
lation of these controllers is improved for better tracking of
velocity signal using energy derivatives as will be described
in Section III-B.

III. EXTENDING TIME DOMAIN PASSIVITY TO DELAYED

TELEOPERATION

In order to make use of the TDPC framework, given in
Section II-B, to stabilize a delayed telerobotic system, one
needs to compute master and slave energies, in real-time
without delay. In order to measure energy on slave side, we
need to measure vsd and fs, see Fig. 2. Out of these two, vsd(t)
can be determined given knowledge of the forward time-delay
and of the forward gains, if any. However fs(t) requires the
actual response of the combined transfer function from vsd(t)
to fs(t) or L [fs(t)/vsd(t)].

As the environment and slave conditions may change over
time, so an offline identified model is not a promising solution.
In this case, we can design a recursive model of remote
system which includes both slave and the environment. This
model will be estimated online, the parameters of which would
be computed recursively using non-linear Kalman filtering as
given in Section III-A. Then the predictor can, with the help of
this estimated model, predict f̂s(t) using vm(t) and the delay
information. Once estimated, f̂s(t) can be used for compu-
tation of αs, the passivity controller, as if no delay existed
in the forward channel. In addition, energy derivatives can be
used to recognize a decrease in the net energy of the system.
This information is then used, as described in Section III-
B, to design passivity controllers that offer excellent velocity
tracking.
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Fig. 2. Passive Network 2-Port using Predictive Time Domain Passivity

A. Non-linear Recursive Estimation of Slave Energy

To estimate the slave energy in real-time requires a non-
linear recursive estimator of the parameters of slave robot as
well as of environment because these parameters can change
over time. There can be different solutions to this problem like:

1) Assigning exponential weights to the measurements, thus
discounting the weight of previous measurements as the
new ones become available, or



2) To use a linear estimator, like Kalman filter, and then to
postulate that the true parameter vector is not constant
but rather varies like a random walk, etc.

We select the second approach in our work. In this case, if
θ̂(t) denotes the parameters of online predictor, the recursive
parameter update equation can be written as:

θ̂(t) = θ̂(t− 1) + L(t)
[
fs(t) − f̂s(t)

]
(6)

or

θ̂(t) = θ̂(t− 1) + L(t)
[
fs(t) − ψT (t)θ̂(t− 1)

]
(7)

where
θ(t) = [β1 . . . β3 γ1 . . . γ3] (8)

for the following 3rd order model for prediction of fs(t):

f̂s(t) = −
3∑

i=1

[βi(t)fs(t− i)] +
3∑

i=1

[γi(t)vsd(t− i)] + e(t)

(9)
The parameter estimation model can be described as:

θ(t+ 1) = F (t)θ(t) + w(t) (10)

f̂s(t) = H(t)θ(t) + e(t) (11)

where in our case, F (t) = I , and H(t) = ψT (t). θ(t) is the
parameter vector at time t, and ψ(t) is the regressor vector. w
is white Gaussian noise and serves to help drift the parameter
vector in the manner of a random walk. v is white noise. The
above equations can be rewritten as:

θ(t+ 1) = θ(t) + w(t) (12)

f̂s(t) = ψT (t)θ(t) + e(t) (13)

where

Ew(t)wT (t) = R1(t) (14)

Ee2 = R2(t) (15)

In such a case, equation (6) can be computed as[7]:

L(t) =
P (t− 1)ψ(t)

R2(t) + ψT (t)P (t − 1)ψ(t)
(16)

P (t) = P (t− 1) − P (t− 1)ψ(t)ψT (t)P (t− 1)
R2(t) + ψT (t)P (t− 1)ψ(t)

+R1(t)

(17)

where P (t) and R are output error- , and measurement error-
covariances, respectively. φ(t) is the vector containing input
and output values at time t.

Using the above mentioned method, the non-linear joint
model of the slave and environment can be estimated recur-
sively. As a first attempt, a 2nd-order ARX model was used.
However simulations suggested that a 3rd-order model best
describes the dynamics of the system as well as smoothens
the predicted energies considerably.

Because the output of network, i.e., fs is delayed response
of remote system, so we must synchronize the input and output

pair that is fed to Kalman filter. Hence at any time instant t,
the input to Kalman filter is given by:

ψ(t− τb) = [v̂sd(t− Tb) fs(t− Tb)] (18)

where
v̂sd(t− Tb) = vm(t− Tf − Tb) (19)

which is obtained by backward time-shifting vm because
both the forward and backward time-delays are known. The
complete stabilization scheme using online estimation and
k−step ahead energy prediction is shown in Fig. 2. There,
however, can be instances when an external unpredicted force
is exerted by the environment which might drive the system
to instability before the predictor could compensate for the
abrupt change. This situation can be countered by restricting
the fs to a certain bound which if reached, would saturate it.
This way any potential instabilities can be avoided.

B. Design of Passivity Controllers based on Energy Deriva-
tives

After Kalman filter provides recursively updated estimate of
parameters θ̂(t), the remaining (Tb + Tf)/∆T inputs can be
used in k− step ahead predictor. The k-th output corresponds
to current time t and is given as f̂s(t) which is the predictive
estimate of environment force.

Clearly this information can be used as following to recur-
sively calculate the energy:

W (n) = W (n− 1)
+fm(n)vm(n) − f̂s(n)v̂sd(n)
+ αm(n− 1)vm(n− 1)2

+ αs(n− 1)f̂s(n− 1)2 (20)

where
v̂sd(n) = vm(n− ζ) (21)

and
ζ = �Tf/∆T � (22)

Here the previous value W (n−1) is to integrate over time,
whereas the last two terms in equation 20 are to deduct energy
contributions by passivity controllers. As we formulate in Sec-
tion III, the effect of time-delay is canceled in the calculation
of passivity controllers, so their values are computed as given
in Table I.

The contributions of passivity controllers are converted into
power variables as either fPC or vPC using the relationships:

fPC(n) = αm(n)vm(n) (23)

vPC(n) = αs(n)fs(n) (24)

When both master and slave ports become negative, the
previous energy value W (n− 1) is also used, as given in [5],
to make, in our case, the slave side additionally conservative
which belongs to Case 3 in table I. It is to be noted that W (n)

and
dW

dt

∣∣∣∣
t=n

are evaluated at each step based on the previous



TABLE I

CALCULATION OF PASSIVITY CONTROLLERS

Energy Variables’ Conditions Designed Controllers

Case

W (n)
dW

dt

�
�
�
�
t=n

Pm(n) Ps(n)
W (n − 1) +

Pm(n)
W (n − 1) +

Ps(n)
αm(n) αs(n)

1 < 0 n/a < 0 ≥ 0 n/a n/a − W (n)

vm(n)2
0

2 < 0 n/a ≥ 0 < 0 n/a n/a 0 − W (n)

ˆfs(n)
2

3 < 0 n/a < 0 < 0 < 0 < 0 − Pm(n)

vm(n)2
−W (n − 1) + Ps(n)

ˆfs(n)
2

4 < 0 n/a < 0 < 0 ≥ 0 < 0 0 −W (n − 1) + (Ps(n) − Pm(n))

f̂s(n)2

5 < 0 n/a < 0 < 0 < 0 ≥ 0 −W (n − 1) + (Pm(n) − Ps(n))

vm(n)2
0

6 ≥ 0 < 0 ≥ 0 ≥ 0 n/a n/a 0 − [W (n) − W (n − 1)]

ˆfs(n)
2

sampling interval and if found negative, respective corrective
action is taken based on the cases given in Table I. Here Pm(n)
and Ps(n) represent the power at the master and slave ports
and are given as:

Pm(n) = fmd(n)vm(n) (25)

Ps(n) = f̂s(n)v̂sd(n) (26)

The calculation of αs is based on estimated force informa-
tion, which may contain noise, so the system response becomes
quite noisy if αs is used directly. To counter this problem, we
suggest a low-pass filter for αs which is designed to pass only
those frequencies that are closer to the expected correction
rate. The concept of filters in teleoperation is not new. Spong
et. al.[8] reported that a digital implementation of a continuous
time passive system may no longer remain passive/stable and
would require the introduction of strictly causal and stable
linear filters to ensure stability of sampled-data master/slave
systems. In addition, simple low-pass filters can also serve to
help limit the bandwidth utilization [9].

Cases 4 and 5 have been designed to dissipate the ad-
ditional energy symmetrically on both master and slave
ports. In the work of Ryu et. al.[5], these two cases

are made to dissipate either −W (n− 1) + Ps(n)
fs(n)2

or

−W (n− 1) + Pm(n)
vm(n)2

, respectively, while in our case, these

terms are modified as −W (n− 1) + (Ps(n) − Pm(n))
fs(n)2

and

−W (n− 1) + (Pm(n) − Ps(n))
vm(n)2

, respectively to make the

transmission as lossless as possible. Case 6, on the other hand,
tries to dissipate energy even when the network port is passive,
based on the real-time derivative of net energy. This step
ensures that the system will always dissipate energy. The effect
of this term will be further elaborated using the simulations
results in Section IV.

IV. SIMULATION RESULTS AND DISCUSSION

The proposed approach is simulated using one-degree-of-
freedom master and slave arms. Environment model uses a
stiffness constant K = 5N/m. The damping constant is
0.5N.s/m. Master arm uses a force control loop to output
the reflected force from the environment while slave arm uses
velocity control to follow the operator commands. Velocity
command is set to a sine wave with an amplitude of 0.24m/s
and a frequency of 2Hz. Sampling time is set at 10ms.

First the system is simulated without any delay in the
forward and backward channels, and because it consists of
inherently stable components, the response is stable, as shown
in Fig. 3(a). Continuous and discrete energies of the system are
given in Fig. 3(b)-3(c). It is clear that net continuous energy
is zero while a small positive value in the discrete case in Fig.
3(c) is due to numerical errors in discrete integration. However,
these figures are important as they represent the ideal response
of a passive system in the absence of time-delay.

Figs. 4(a)-4(b) show the same teleoperation system when
simulated with delays of 0.2s in the forward- and 0.3s in the
backward-path respectively. The net energy in the system is
rapidly growing negative and is making it unstable.

The proposed scheme using only the prediction of slave-
side energy as described in Section III and without energy
derivatives is now engaged into the simulation of the given
teleoperation system in the presence of time-delays. It clearly
stabilizes the system as can be seen from the velocity tracking
in Fig. 5(a). Passivity controllers are computed using Cases 1-5
from Table I. Fig. 5(b) shows an apparent decrease in negative
energy as it drops from −25Nm for an unstable system in Fig.
4(b) to just about −0.2Nm in Fig. 5(b).

The performance of the teleoperated system is directly
linked to discrete energies given in Fig. 5(c) as the algorithm
that computes passivity controllers makes use of only the
discrete energy values. Looking closely at Figs. 5(a) and 5(c)
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Fig. 3. Teleoperation without any time-delay (a) Command and slave
velocities, (b) continuous-time energies at master- and slave-side ports of the
network, (c) discrete energies

reveals that the slave velocity gets noisy after 8 sec. which
is directly related to the decrease in the net energy at the
same time instant in Fig. 5(c). The passivity controller will,
however, not fire till the net energy will become negative. It
becomes then obvious that a compensation of the decrease in
net energy would certainly improve the system performance as
it will force the system to always stay passive. To implement
this feature, we keep track of the net energy W (n) and its

derivative
dW

dt

∣∣∣∣
t=n

. Once the derivative gets negative, we

do not wait for net energy to become negative. Rather this
decrease in net energy is compensated immediately using Case
6 given in Table I. This approach gives another meaning to the
Reference Energy Following approach described in [6].

Simulation results using this energy derivative based TDPC
are given in Figs. 6(a)-6(f). Excellent velocity tracking is
observed in Fig. 6(a). A striking resemblance between the
discrete and continuous energies of a delay-free system shown
in Fig. 3 and of a delayed system under energy derivative
based TDPC in Fig. 6 can be easily seen. Fig. 6(e) shows
the activations of passivity controller αs in terms of the
velocity compensation vPC (refer to Fig. 2) to compensate
the active behavior of the network 2-port. Fig. 6(f) shows
how the Kalman filter based non-linear estimation of joint
model of slave dynamics and environment provides the real-
time prediction of environment force.
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Fig. 4. Delays Tf = 0.3s, Tb = 0.2s, without passivity controllers (a)
Command and slave velocities, (b) energies in continuous time

It should be noted that although the results presented here
are based on constant time delay, the approach is equally valid
for time-varying time delays provided a good estimate of the
current value of time-delay is given. Our future work will
further explore this direction.

V. CONCLUSION

This contribution extends the time domain passivity theory
for teleoperated systems in the presence of constant time
delays. The proposed approach, in addition to online non-
linear estimation of joint model of slave dynamics and the
environment, makes use of energy derivatives to compensate
for an active behavior of the network 2-port. Passivity con-
trollers to this effect are designed and their stabilizing action
is demonstrated through the simulation of a one-degree-of-
freedom teleoperation system.
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Fig. 5. Without energy derivatives, Delays Tf = 0.3s, Tb = 0.2s (a)
Command and slave velocities, (b) continuous energies, (c) discrete energies
, (d) fPC , (e) vPC , (f) predicted and actual environment force
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Fig. 6. With energy derivatives, Delays Tf = 0.3s, Tb = 0.2s and
αs filtered at 1KHz (a) Command and slave velocities, (b) energies in
continuous time, (c) discrete energies, (d) fPC , (e) vPC , (f) predicted and
actual environment forces


